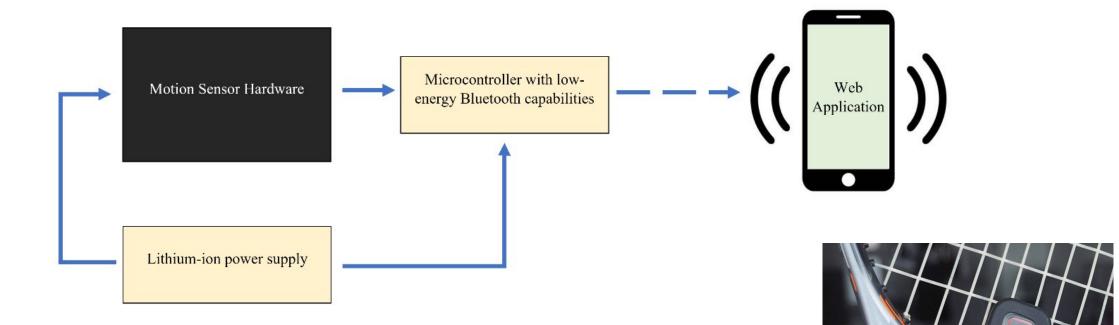
Smart Tennis Racquet Design Review

Anubhav Agarwal, Shez Malik, Robert Nelson, Lycia Tran, Rajan Vivek Faculty Advisor: Dr. David Anderson

ELECTRICAL [-] COMPUTER

Georgia School of Electrical and Tech Computer Engineering

Overview


- Review of Project Description and Goals
- Physical Product Design
- Software Design Architecture
- User Interface Architecture
- Current Status

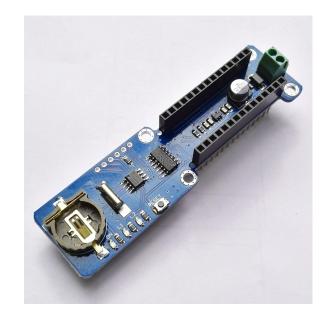
Project Goals Review

Our goal is to increase access to high quality tennis analysis.

- Create a device that attaches to any tennis racquet that classifies and logs metrics including:
 - Swing Type
 - Swing speed
 - Ball impact location
- Our device will classify and run analysis on-device and send data to our web app for visualization.

System Design Review

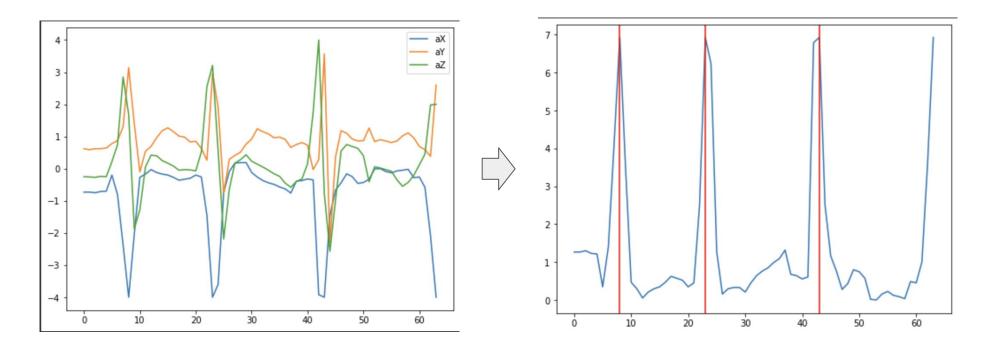
Georgia School of Electrical and Tech Computer Engineering


Physical Product Design

- Hardware Stack
 - Arduino Nano 33 BLE
 - LiCB CR2032 3V Lithium Battery
 - Arduino Nano Data Logger Shield
 - Analog Devices 200g accelerometer
 - 1.6kHz maximum sampling frequency
 - Laptop computer
- Hardware Assembly
 - Protoboard
 - 3D printed case designed to fit in Wilson Adult Tennis Racket

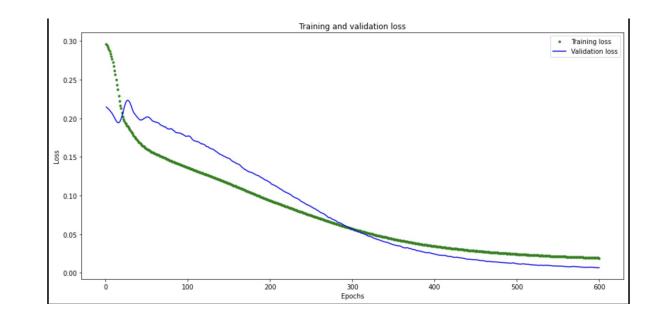
Physical Product Design

- Hardware Strategy
 - Record data for fixed time interval on Data Shield
 - Use software stack to detect and classify events
 - Bluetooth only used to send results
 - Past reliability issues found with bluetooth communications at distance
 - Computer must send an acknowledgment of receipt
 - Display results on web application



Software Design: Training Data Collection

- 1. Data Collection
 - a. Various kinds of swings in real game-play
 - i. Multiple people with different skill levels
 - ii. Perhaps have an additional class for Other/Bad form swings
 - b. Ground Truth of swing speeds
 - i. Baseball radar gun
 - c. Ground Truth of location of ball collision
 - i. Divide into 4 quadrants + center (sweet spot)
- 2. Metrics
 - a. 3 acceleration axes and 3 gyroscope axes
 - b. 2 scales: 16 G and 200 G


On-Chip Software Architecture Design

- Event detection
 - Sum of squares taken for X, Y, and Z acceleration values
 - Threshold detection
 - Data taken from a fixed time before threshold event

On-Chip Software Architecture Design

- Swing Detection
 - 2 Layer Neural Network
 - 1st layer: 20 neurons
 - 2nd layer: 15 neurons
 - Mean and STD of acceleration and gyroscopic sensors (3 axes each)
- Prediction
 - Serve
 - \circ Forehand
 - Backhand
- Ground truth
 - User observation (swing type)
 - Radar gun (serve speed)

User Interface

- Initial user interface site is located at <u>https://anubop.github.io/tennis-sensor/</u>
- Anubhav and Lycia have begun development on their user branches

Project Information Website

- Initial information and presentation site is located at <u>http://eceseniordesign2022spring.ece.gatech.edu/sd22p36/</u>
- Will update with presentations, technical reviews, etc.

Current Status

- Data Logger still hasn't arrived
 - Start anyways on new accelerometer integration
 - Record with a long USB cable
 - Help verify software infrastructure with higher sampling rate
 - Record new data once data logger comes
- Project information and user interface sites have been created
- Software goals achieved thus far via 2 layer neural network
- Plan to collect shot speed data using radar gun and train new model

Questions?

